MatematikTutkusu.com Forumları

Tekrarlı Kombinasyon?

1 2 Son
kicus 05:09 10 Eyl 2011 #1


2. soruda çözümünde tekrarlı kombinasyon diyor tekrarlı kombinasyon nedir?
neye gore sorunun tekrarlı kombinasyon oldugunu anlıyoruz?

Tekrarlı kombınasyonun mantıgı nedir?
Acaba formulu nasıl meynada geldı (ispatı nedir)

Cem1971 - ait kullanıcı resmi (Avatar) Cem1971 12:46 10 Eyl 2011 #2
1:
9-2=7 eleman içinden a<b<c için C(7,3)=35 olur.

2:
1. çözüm: Tekrarlı kombinasyon, multiset'lik (çoklu elemanlı küme) için geçerlidir.
x1+x2+x3+x4+x5=3 için formül,
C(3+5-1,3)=C(3+5-1,5-1)
C(7,3)=C(7,4)=35 bulunur.

2.çözüm:
Nesneler özdeş olmasın, bu sefer dizilişlerin önemi vardır ve P(7,3) olur. Nesneler özdeş olduğundan bu sözkonusu dizilişin önemi yoktur. O zaman da permütasyon yerine kombinasyon kullanılır. C(7,3)=35

3. çözüm:
11100 ---> 5!/2!.3!=10
12000 ---> 5!/3!=20
30000 ---> 5!/4!=5 ----> 10+20+5=35 bulunur.

Buradan anlaşılıyor ki; tekrarlı kombinasyon, tekrarlı permütasyonun bir türüdür. Kezâ ispatı da aynı şeyi söyler:

r tane özdeş nesne ve n yerimiz olsun.
1.yer | 2.yer | 3.yer| 4.yer |......| n. yer ---> şeklinde bu n yeri n-1 tane ayraç çizgi ile ayıralım. İşte bu yerlere 0,1,2,...r-li özdeş nesneler gelecektir. Bu ise ayraç n-1 tane çizgi (özdeş) ile r tane özdeşin tekrarlı permütasyona girmesi demektir.

(r+n-1)!/r!.(n-1)!=C(r+n-1,n-1)=C(r+n-1,r) elde edilir.

Serkan A. - ait kullanıcı resmi (Avatar) Serkan A. 14:55 10 Eyl 2011 #3
Buradaki döküman işinize yarayabilir.

gereksizyorumcu - ait kullanıcı resmi (Avatar) gereksizyorumcu 17:26 10 Eyl 2011 #4
ilk sorunuzdaki altkume yolu ile tam olarak ne kastettiginizi soylerseniz onun disinda bi cozum yazmaya calisiriz.

ikinci sorunuz gibi sorularda 1-0 dizilimlerinin sayisini bulabilirsiniz. 1 ler cocuklari 0 lar oyuncaklari simgeler. herbir 1 sayisinin sagindaki 0 sayisi o cocugun aldigi oyuncak sayisi olur. burada dikkat edilecek sey en basta 1 olmasinin sart olmasi (sagindaki sifirlar kadar oyuncak alma olarak tanimladik)
sonucta bu soru icin 4 tane 1 ile 3 tane 0 kac dehisik sekilde dizilir?
7!/(3!.4!)=C(7,3)

Cem1971 - ait kullanıcı resmi (Avatar) Cem1971 18:16 10 Eyl 2011 #5
C(7,3) ile olmasın, çözülmesin istiyor sanırım.
Ama en kısası ve klası budur. Bundan daha güzel bir çözüm yok. Burada mantık; (a,b,c) şeklinde seçilen üçlüler daima a<b<c formatında olacaktır. Meselâ; 7 elemandan (5,2,8) seçtik, 2<5<8 dir ve dolayısıyla abc=258 yazılabilir v.s.
Bu da bize sorunun C(7,3) kombinasyonuyla çözülebileceğini söyler.

Alternatif bir çözüm istersen şu var:
{2,3,4,5,6,7,8} elemanları ve (yüzler,onlar,_) formu için;

23_ için 5 tane,
24_ için 4
25_ için 3
26_ için 2
27_ için 1 olur. Böylece 2-şer ardışık ilerlersin, meselâ 34_ , 45_ , v.s. Böylece her satır 1'er azalacaktır:

5+4+3+2+1
4+3+2+1+0
3+2+1+0+0
2+1+0+0+0
1+0+0+0+0
+___________
15+10+6+3+1=35

Serkan A. - ait kullanıcı resmi (Avatar) Serkan A. 18:18 10 Eyl 2011 #6
o zaman bu dökümandan öğrenebilir.

kicus 21:59 10 Eyl 2011 #7
Hepinize cok tesekkuler hocam yardımlarınız ıcın ıncelıyorum

kicus 02:33 11 Eyl 2011 #8
yardımız ıcın Teşekkurler

kicus 03:56 11 Eyl 2011 #9
4 özdes nesne, özdeş üç kutuya 1 pay, 1pay ve 2
pay olacak sekilde kaç farklı dagıtılabilir?

acaba 1 farklı sekıldemı oluyor ???

nesneler ozdes kutularda ozdes

gereksizyorumcu - ait kullanıcı resmi (Avatar) gereksizyorumcu 11:03 11 Eyl 2011 #10
evet bunun cevabı 1 oluyor.

1 2 Son
Üst Forum
Anasayfa
Yukarı Standart Görünüm