cevap ver
... 7 8 9 10
  1. #81

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni
    Bana 2 nin bilmem kaç milyonuncu kuvvetinin bir eksiği ile bulunan bir asal sayının; asal sayılar kurallı mı değil mi sorusuna katkısının ne olabileceğini söyler misiniz? 1-2-3-4 belki 5 basamaklı asal sayılarda üretemediğiniz bir kuralı, bilmem kaç milyar basamaklı bir sayıya bakıp da bulunabileceğine benim aklım ermiyor. Burada dün geceki bir konu devreye giriyor. Siz dediniz ya, 1-2 basamaklı sayılar için bölünebilme kurallarına ne gerek var diye. İşte bu konu sizin düşüncenizi çürütüyor bence. Eğer 1-2-3 basamaklı asal sayılar arasındaki bir ilişki bulunabilirse , bu genelleştirilebilir. Eğer varsa bir çözüm bence gözümüzün önünde, uzaklara gitmeye gerek yok.

  2. #82

    Statü
    Grubu
    Moderatör
    İş
    Diğer
    teknik nedir bilmiyorum ama ben ispatını yazayım ne kadar kolay olduğunu görünce şaşıracaksınız

    p asal değil de a,b ≠1 gibi iki sayının çarpımı olsa p=a.b

    2p-1=2a.b-1=(2a-1)(2a(b-1)+2a(b-2)+...+2a+1)

    olacağından ve bu 2 çarpan da 1 den büyük olduğundan 2p-1 asal olamaz, demek ki 2p-1 asalsa p de asaldır.

  3. #83

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni
    Yok şaşırmadım. Benim aklımdaki de buydu. Ama ben bu şekilde bir çarpanlara ayırma bilmiyorum. Bunun doğru olduğuna emin misiniz? Asal sayı bulma tekniği olarak çarpanlara ayırmadan yararlanılabileceğini ben de düşündüm ama benimki biraz farklı.Bu ayırma da yanlış gibi geldi bana.

  4. #84

    Statü
    Grubu
    Moderatör
    İş
    Diğer
    xab-1 ifadesinin genel çarpanlara ayrılma şekli budur hocam.

    mesela a=1 , b=2 için
    x²-1=(x-1)(x+1)
    ya da a=1 , b=3 için
    x³-1=(x-1)(x²+x+1) eşitliklerini elde ederiz.

    yukarıdaki parantezlerin içlerini çarparak açarsanız ilk başta oluşacak 2ab ve en sonda oluşacak -1 sayılarından hariç her sayının birbirini ***ürdüğünü de görebilrsiniz.

    şöyle de düşünbiliriz;
    ortak çarpanı 2a , ilk terimi 1 ve son terimi 2a(b-1) olan geometrik dizinin toplamı

  5. #85

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni
    Şimdi anladım ispatı. Ama bu benim aklıma yeni bir soru getirdi. 2 nin herhangi bir asal kuvvetinin bir eksiğinin her zaman asal olmadığını söylediniz. Peki matematikçiler bunu, deneme yanılma veya aksine örnek vererek değil de matematiksel ispatla kanıtlayabilmişler mi? Benim anladığım, bunun kanıtlanabilmesi için, her asal sayının 2 nin herhangi bir kuvvetinin 1 eksiği olarak yazılabilmesi gerekirdi. Böyle olmadığı için bunun ispatının yapılması mümkün gözükmüyor.

  6. #86

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni
    Şimdi anladım ispatı. Ama bu benim aklıma yeni bir soru getirdi. 2 nin herhangi bir asal kuvvetinin bir eksiğinin her zaman asal olmadığını söylediniz. Peki matematikçiler bunu, deneme yanılma veya aksine örnek vererek değil de matematiksel ispatla kanıtlayabilmişler mi? Benim anladığım, bunun kanıtlanabilmesi için, her asal sayının 2 nin herhangi bir kuvvetinin 1 eksiği olarak yazılabilmesi gerekirdi. Böyle olmadığı için bunun ispatının yapılması mümkün gözükmüyor.
    3 tür beyin vardır.
    Küçük beyinler, insanları;
    Orta beyinler, olayları;
    Büyük beyinler, fikirleri;
    tartışır.

  7. #87

    Statü
    Grubu
    Moderatör
    İş
    Diğer
    "her asal sayının 2 nin kuvvetinin 1 eksiği olarak yzılması gerekirdi" ifadesine bir cevap arıyoruz sanırım.
    böyle bişey yukarıdaki çözümlemeden çıkarılamaz. yine bu da önermenin sağ tarafında kalan bir düşünce. biz 2 nin bir kuvvetinin 1 eksiği şeklinde yazılan bir sayının asal olup olmamasını inceliyoruz ve asalsa o kuvvetin de asal olması sonucunu çıkartıyoruz ama sayı asalken bu sayının 2 nin herhangi bir kuvvetinin 1 eksiği şeklinde yazılabileceğini söyleyemeyiz.

    şimdi üzerinde işlem yapmak gerekir ama büyük ihtimalle bütün asal sayılar 2n-(başka bir asal)m şeklinde yazılıyordur. (bunun üzerinde düşüneyim ben )

  8. #88

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni
    =2047=23.89
    Yukardaki ispatın tekniğini kullanırsak 23 ve 89 u çarpan olarak bulamıyoruz. Eğer, 23 ve 89, (2^n)-1 olarak yazılabilseydi bulabilirdik demek istemiştim.
    Yeni bir soru sayın üstad, Katsayılarının hepsi 1 olan n. dereceden bir polinom, asal polinom değil midir? Ya da asal olmaması için hangi şart lazımdır biliyor musunuz?
    3 tür beyin vardır.
    Küçük beyinler, insanları;
    Orta beyinler, olayları;
    Büyük beyinler, fikirleri;
    tartışır.

  9. #89

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni
    =2047=23.89
    Yukardaki ispatın tekniğini kullanırsak 23 ve 89 u çarpan olarak bulamıyoruz. Eğer, 23 ve 89, (2^n)-1 olarak yazılabilseydi bulabilirdik demek istemiştim.
    Yeni bir soru sayın üstad, Katsayılarının hepsi 1 olan n. dereceden bir polinom, asal polinom değil midir? Ya da asal olmaması için hangi şart lazımdır biliyor musunuz?
    3 tür beyin vardır.
    Küçük beyinler, insanları;
    Orta beyinler, olayları;
    Büyük beyinler, fikirleri;
    tartışır.

  10. #90

    Statü
    Grubu
    Moderatör
    İş
    Diğer
    =2047=23.89
    Yukardaki ispatın tekniğini kullanırsak 23 ve 89 u çarpan olarak bulamıyoruz. Eğer, 23 ve 89, (2^n)-1 olarak yazılabilseydi bulabilirdik demek istemiştim.
    Yeni bir soru sayın üstad, Katsayılarının hepsi 1 olan n. dereceden bir polinom, asal polinom değil midir? Ya da asal olmaması için hangi şart lazımdır biliyor musunuz?
    evet bunun için çeşitli teoremler olması lazım.
    yanlış hatırlamıyosam bi tanesi şöyleydi (tam doğrusunu bulursam onu da yazarım ama bu konulardan pek anlamıyorum)
    polinomun x>(tüm katsayıları) olacak şekilde bir x için değeri asal sayı oluyorsa o polinom tamsayılar üzerinde çarpanlarına ayrılmaz.

    sizin sorunuzda katsayıların hepsi 1 olduğundan
    polinomun x=2,3,... herhangi bir noktadaki değerinin asal olması o polinomun tamsayılar üzerinde asal olması için yeterli olması lazım.

    bir örnek verirsek P(x)=x²+x+1 çarpanlarına ayrılmaz çünkü x=2 için 7 değeri alıyor.

Diğer çözümlü sorular için alttaki linkleri ziyaret ediniz


 
... 7 8 9 10

  • Bu yazıyı beğenerek
    destek
    verebilirsiniz

    Foruma üye olmana gerek yok! Facebook hesabınla yorumlarını bekliyoruz!
  • Benzer konular

    1. sayma sayıları
      cantor, bu konuyu "Özel matematik soruları" forumunda açtı.
      : 1
      : 08 Kas 2013, 21:05
    2. 3 tane üçgende alan 2 tane uzunluk sorusu
      mmorwen, bu konuyu "Ygs & Lys Matematik" forumunda açtı.
      : 7
      : 28 Eyl 2013, 20:34
    3. sayma kuralları
      zac, bu konuyu "11. sınıf matematik soruları" forumunda açtı.
      : 10
      : 11 Şub 2013, 15:30
    4. Sayma Kuralları
      mertcem, bu konuyu "10. sınıf matematik soruları" forumunda açtı.
      : 5
      : 25 Ara 2011, 23:24
    5. Sayma kuralları
      halil2, bu konuyu "10. sınıf matematik soruları" forumunda açtı.
      : 2
      : 27 Mar 2011, 21:52
    Forum Kullanım ve Gizlilik Kuralları