1. #11

    Statü
    Grubu
    Moderatör
    İş
    Diğer

    Sponsorlu Bağlantılar

    1. soru için size biraz ipucu vereyim belki işinize yarar.

    Kökleri verilen sayılar olan 99. dereceden polinomu düşünün. Aranan sayı bu polinomun köklerinin çift tanesinin çarpımlarının toplamıdır. Bunun aslında polinomun başkatsayısı dışındaki tek dereceli kuvvetlerin katsayıları toplamı olduğuna dikkat ediniz. Bu arada cevap E seçeneğidir.
    bu hiç aklıma gelmemişti. çözüm gibi ipucu olmuş
    (x-1/2).(x-1/3)...(x-1/100) polinomunu yazdığımızda dediğiniz gibi x=1 ve x=-1 alıp soruyu çözebiliyoruz.
    ben hep kombinatorik yollarda takıldım. oradan da bişeylr çıkacaktır ama bulamamıştım.

  2. #12

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni

    Sponsorlu Bağlantılar

    (x-1/2).(x-1/3)...(x-1/100) polinomunu yazdığımızda dediğiniz gibi x=1 ve x=-1 alıp soruyu çözebiliyoruz.
    ben hep kombinatorik yollarda takıldım. oradan da bişeylr çıkacaktır ama bulamamıştım.
    sayma,kombinatorik yollarla yukarıdaki polinomda x=1 ve x=-1 yazmak galiba türkçesi yanlış yapmadıysam şu oluyor;
    çift miktarda alınıp tüm çarpımların toplamı ile (buna Ç diyelim)
    tek miktarda alınıp tüm çarpımların toplamı nın (buna T diyelim)
    bi toplanması bide çıkarılması anlamına geliyor galiba yani
    Ç+T=(1+1/2)(1+1/3)...(1+1/100)-1=(101/2)-1=99/2
    Ç-T=(1-1/2)(1-1/3)....(1-1/100)-1=(1/100)-1=-99/100
    2Ç=(99/2)-(99/100)
    Ç=99.49/200

    3.sorunun cevabında n=9 işaretleriz n=4 ü sonraya bırakırız dediniz
    n=4 alamayız çünkü n=4 için en son yazdığınız ifade 0 yapıyor oyuncuda 0 puanda olmayacağı için n=9 alıyoruz sadece

  3. #13

    Statü
    Grubu
    Moderatör
    İş
    Diğer

    Sponsorlu Bağlantılar

    hocam ben sayma ya da kombinatorik herneyse o yollardan bulamamıştım. mathematics21 hocamızın verdiği ipucu ile sizin yaptığınız gibi çözüm kolayca bulunuyor.

    9 mu 4 mü sorusunda da 4 olduğunda 1. oyuncunun puanına bakmamıştım 0 çıkıyormuş son 3 te olması gereken oyuncular da 2 şer puanla ilk 3 ü paylaşıyolar
    9 için çözüm var mı bu da sorunun çözüm bekleyen tarafı. cevabın 9 olması için bu da gerekli ama ben soruyu soranın yalancısıyım, çözüm varmış gibi sormuş

  4. #14

    Statü
    Grubu
    Üye
    İş
    11. sınıf
    1.
    şimdilik bi çözüm bulamadım görünüşte zor gibi sonra bakayım buna

    2.
    bu konuya (Kaç sayı kendi yerinde) göz atabilirsiniz
    cevap 6!/e ye en yakın tam sayı olacaktır. bu da 265

    3.
    oyuncu sayısı n olsun , toplam puanın C(n,2) olduğunu görüyoruz.
    şimdi son 3ü ayıralım bunların son3 ten alacağı puanların toplamı C(3,2)=3 maç yapacaklarından 3 olacaktır yani son 3 lünün puanları toplamı da 6 olacaktır bunların 3 ünü son 3 te yer almayan (n-3) kişiden almışlardır.
    bu (n-3) kişinin kendi aralarındaki maçlarındaysa toplam C(n-3,2) puan oluşur
    soruda anlatılana göe C(n,2)=2.(C(n-3,2)+3) elde edilir
    bu 2. dereceden deklem de çözülürse galiba n=4 ve n=9 çıkıyor
    n=4 nasıl çıktı onu anlayamadım ya da onu nasıl eleriz şimdi kafam karışık pek kavrayamıyorum. n=9 u işaretleriz , n=4 ü sonraya bırakırız.

    5.
    bu sayı 9 a bölünecektir , aynı zamanda 11111 e bölüneceğinden 99999 ile de bölünür . diyelim ki sayı
    99999.k şeklinde (10000<k<99999) , k ekleyip çıkartırsak
    100000k-k olur bu da sayının ilk beş basamağı ile son 5 basamağının sırayla birbirini 9 a tamamlaması anlamına gelir biraz bakarsanız görebilirsiniz. (örnek 9876501234)
    sonrasındaya Duygu'nun çarptığı sayılara ulaşıyoruz sanırım.

    Gereksiz yorumcu, çözümleriniz için teşekkürler. Bir şey sormak istiyorum 2. soruyu permütasyon-kombinasyon ile falan da yapamaz mıydık acaba? Çözümünüzü anladım ama sadece merak ettim. Tekrar teşekkürler.

  5. #15

    Statü
    Grubu
    Üye
    İş
    11. sınıf
    C.4
    4 elemanlı alt kümeleri=C(9,4)=9!/5!.4!=9.8.7.6/4.3.2=126
    Ardışık ifadeler={1,2}{4,5}{5,6}{8,9}{9,10}{10,11}=6 tane
    126-6=120 diye düşündüm.

    Kümede hata yok değil mi?

    Sanırım eksik oldu. Ama soru çözüme ulaştı. Yine de teşekkürler.

  6. #16

    Statü
    Grubu
    Üye
    İş
    11. sınıf
    Diğer ilgilenenlere de teşekkürler.

  7. #17

    Statü
    Grubu
    Moderatör
    İş
    Diğer
    Gereksiz yorumcu, çözümleriniz için teşekkürler. Bir şey sormak istiyorum 2. soruyu permütasyon-kombinasyon ile falan da yapamaz mıydık acaba? Çözümünüzü anladım ama sadece merak ettim. Tekrar teşekkürler.
    linkteki yorumlarda çözüm var ama buraya da aktarayım.

    6 mektup var 6 tane de alıcı var (mektupların üzerine yazılmış adreser o mektubu kişiyle eşleştiren bir bağ gibi düşün yani 3 farklı nokta yok mektuplar ve kişiler var)
    bizden hiçbir mektubu gerçek alıcısının almaması isteniyor.

    içerme dışarma ilkesinin sonucu olarak şunu hesaplarız
    +tüm durumlar
    -1 kişinin kendi, mektubunu aldığı durumlar (diğerlrinin kendi mektubunu alıp almaması bizi ilgilendirmez , 1 kişi seçer onun kendi mektubunu aldığı tüm durumları hesaplarız)
    +2 kişinin kendi mektubunu aldığı durumlar
    -3 kişinin kendi ..
    ..
    +6 kişinin de kendi mektubunu aldığı durumlar

    6!-C(6,1).5!+C(6,2).4!-C(6,3).3!+C(6,4).2!-C(6,5).1!+C(6,6)
    720-720+360-120+30-6+1=265 durumda hiçkimsekndi mektubunu almamış olur.

  8. #18

    Statü
    Grubu
    Kıdemli Üye
    İş
    Diğer
    3. soru için küçük bir yorumda bulunayım. Turnuvaya katılacak kişi sayısının 4 olamayağı kesinleşti. Bu arada her oyuncunun alacağı puanın bir tamsayı olması gerektiğine dikkat edelim. Puan sıralamasında son üç sırada olmayan bir oyuncunun son üç sırada olan oyunculardan alabileceği toplam puan en fazla 3 olduğuna göre birinci olan oyuncunun alabileceği en yüksek puan 6 dır. Eşit puanlı oyuncuların olmaması durumunda turnuvaya katılan kişi sayısı 9 ise bunları sıralamak için birinci oyuncunun puanı en az 8 olmalıdır. Bu da bize çelişki verir. Eşit puanlı oyuncuların olabilmesi durumunda sıralama nasıl yapılır bilmiyorum ama eşit puanlı oyuncu olma durumu için yine de bir örnek bulmak gerekir.

  9. #19

    Statü
    Grubu
    Moderatör
    İş
    Diğer
    ilk 6dakilerin hepsinin 5er puan son 3tekilerin hepsinin 2 şer puan aldığı bir durum oluşturulabiliyor

  10. #20

    Statü
    Grubu
    Kıdemli Üye
    İş
    Diğer
    Eşit puanlı oyuncuların olabilmesi durumunda 9 oyuncu için maç tablosu aşağıdaki gibi bir örnek oluşturdum:

    1 2 3 4 5 6 7 8 9 P
    1 x 0,5 0,5 0,5 0,5 0,5 0,5 1 1 5
    2 0,5 x 0,5 0,5 0,5 0,5 0,5 1 1 5
    3 0,5 0,5 x 0,5 0,5 0,5 1 0,5 1 5
    4 0,5 0,5 0,5 x 0,5 0,5 1 0,5 1 5
    5 0,5 0,5 0,5 0,5 x 0,5 1 1 0,5 5
    6 0,5 0,5 0,5 0,5 0,5 x 1 1 0,5 5
    7 0,5 0,5 0 0 0 0 x 0,5 0,5 2
    8 0 0 0,5 0,5 0 0 0,5 x 0,5 2
    9 0 0 0 0 0,5 0,5 0,5 0,5 x 2

    tabloda ilk sütun ve ilk satırdaki 1, 2, ..., 9 sayıları oyuncuların puan sıralamasındaki yerlerini son sütun da her oyuncunun aldığı toplam puanı gösteriyor. Tablodaki diğer sayılar o sayının bulunduğu satırın başında belirtilen sıradaki oyuncunun o sayının bulunduğu sütunun tepesinde belirtilen oyuncu ile yaptığı maçtan aldığı puanı gösteriyor.


 
1 2 3

  • Bu yazıyı beğenerek
    destek
    verebilirsiniz

    Foruma üye olmana gerek yok! Facebook hesabınla yorumlarını bekliyoruz!
  • Benzer konular

    1. Öğretim Yöntemleri
      zynpbrnc, bu konuyu "İlköğretim Matematik Öğretmenleri" forumunda açtı.
      : 1
      : 02 Ara 2013, 23:39
    2. İspat Yöntemleri ve Biçimleri
      Admin, bu konuyu "Matematik Arşivi" forumunda açtı.
      : 1
      : 06 Kas 2012, 22:16
    3. İspat Yöntemleri.
      barbarosanadolu, bu konuyu "9. sınıf matematik soruları" forumunda açtı.
      : 1
      : 08 Eki 2011, 13:08
    4. sayma yöntemleri 1 soru
      derya yüksel, bu konuyu "10. sınıf matematik soruları" forumunda açtı.
      : 8
      : 20 May 2011, 16:44
    5. temel sayma y./permütasyon
      zülfiye33, bu konuyu "10. sınıf matematik soruları" forumunda açtı.
      : 1
      : 26 Nis 2011, 07:43
    Forum Kullanım ve Gizlilik Kuralları