1. #1

    Statü
    Grubu
    Üye
    İş
    12. sınıf

    Sponsorlu Bağlantılar

    Trigonometrik Denklemler

    1) sinx<cosx eşitliğinin [0,2∏] aralığındaki çözüm kümesi nedir ?

    Cevap: [0,45) U (225,360]


    2) 2cos2x+sinx+sin2x=0 denkleminin [0,2∏] aralığında kaç farklı kökü vardır ? Cevap:1


    3) (a+b)∈[0,180] olmak üzere,

    sin(65-a)+cos(b-10)=0 eşitliğini sağlayan a+b kaç derecedir ? Cevap:165

    4)

    sinx-cosx
    cosx
    >0 eşitliğinin [0,2∏] aralığındaki çözüm kümesi nedir ? Cevap:[45,90) U (225,270]


    5) sinx+sin3x=2sin22x denkleminin (0,∏) aralığında kaç farklı kökü vardır ?

    Şu eşitsizliklerin ,eşitlikler gibi bir yolu var mı ?Yoksa çizip yorumlayarak mı bulmak gerekiyor ?

  2. #2

    Statü
    Grubu
    Kıdemli Üye
    İş
    Diğer

    Sponsorlu Bağlantılar

    1
    Bu soruların kolay çözümü ya koordinat düzlemini zihinde canlandırmak ya da çizmektir..
    Kosinüs açının birim çembere dokunduğu yerden x eksenine inen diktir..Sinüste y eksenine inen diktir..0 derecede kosinüs 1 sinüs ise
    0'dır..Şimdi açıyı ilerletelim..45 dereceye kadar sinüs değerleri kosinüs değerlerinden küçük olacaktır..(Bunu birim çemberi çizip 45 dereceye kadar birkaç açı çizip de görebiliriz)
    45 derecede ise sinüs ve kosinüs değerleri eşit olur..Oysa eşitlik verilmemiş bu yüzden dahil değil..İlk sınırlar [0,45)

    45'ten büyük değerlerde kosinüs sinüsten küçüktür,1.bölge bitti..2.bölge ise kosinüsün negatif,sinüsün pozitif olduğu yer olduğundan sinüsün küçük olması mümkün değil..

    3.bölgede ise 225 (180+45 aynı 1.bölgede olduğu gibi) dereceden sonra sinüs değerleri gittikçe azalacak,kosinüs değerleri ise artacaktır..(Çünkü negatifte sayısal olarak az,gerçekte çoktur)(225 dahil değil,cos225=sin225)

    4.bölge ise 360 dereceye kadar tamamen cos>sin 'dir..Kosinüs pozitif,sinüs negatif çünkü..Öyleyse 2.aralığımız (225,360]

    Bu ikisini birleştirirsek [0,45) U (225,360] bulunur..

    2
    2cos²+sinx+sin²x=0 (Burada 2.cos² ifadesini cos²x+cos²x şeklinde yazabiliriz)
    cos²x+cos²x +sinx+sin²x=0 (Burada kalın ifadelerin toplamı 1'dir)
    cos²x+sinx+1=0 (Aynı şekilde cos²x ifadesi yerine 1-sin²x yazabiliriz)
    1-sin²x+sinx+1=0 (İfadeleri sağa atalım denklem güzelleşsin)
    sin²x-sinx-2=0 (Burada sinx ifadesine a diyelim çözüm kolaylığı olsun)
    a²-a-2=0 (Çarpanlarını ayıralım)
    (a+1)(a-2)=0
    Buradan a=-1 ve a=2 bulunur a=sinx'ti..Yerine yazalım..
    sinx=-1 ve sinx≠2 (sin değeri 1'den büyük olamaz)
    Öyleyse sinx=-1 bulunur..Sinüsün -1 olduğu açı [0,360] aralığında 270 derecedir..Demek ki bir tane kökü varmış..


    3
    sin(65-a)+cos(b-10)=0 (cos ifadesini karşıya atalım)
    sin(65-a)=-cos(b-10) bulunur..Bulmamız gereken tek şey sinüsün ve kosinüsün birbirinin eksilisi olduğu açı,soruda verilene göre bunu 0-180 arasında bulmalıyız ki a,b değerlerinde sorun çıkmasın..
    sin45=-cos135 bu isteneni sağlıyor..(sin45=cos45=1 olduğundan,sin45'i olduğu gibi bıraktık,cosx'in
    -1 olduğu açıyı aradık,bu da 135 derece oldu yâni cos(90+45))

    Toparlayalım..
    sin(65-a)=-cos(b-10)
    sin(45)=-cos(135)

    65-a=45 buradan a=20 ve b-10=135 buradan b=145
    a+b=165 bulunur..
    4

    (sinx-cosx)/(cosx)>0 burada ifadeyi şöyle de yazabiliriz..
    (sinx/cosx)-(cosx/cosx)>0
    tanx-1>0
    tanx>1 şimdi aynı ilk sorudaki mantığı uygulayarak tanjantın 1'den büyük olduğu değerleri arayacağız..

    Son soruda grafiği ayrı ayrı çizip kökleri bulmaya çalıştım ama formülleri kullanarak nasıl bulacağız fikrim yok,belki arkadaşlar bulabilir..
    9⁵+2⁵+7⁵+2⁵+7⁵=92727 ... 9⁵+3⁵+0⁵+8⁵+4⁵=93084

Diğer çözümlü sorular için alttaki linkleri ziyaret ediniz


 

  • Bu yazıyı beğenerek
    destek
    verebilirsiniz

    Foruma üye olmana gerek yok! Facebook hesabınla yorumlarını bekliyoruz!
  • Benzer konular

    1. Trigonometrik denklemler
      dante, bu konuyu "10. sınıf matematik soruları" forumunda açtı.
      : 5
      : 07 Ağu 2013, 10:20
    2. Trigonometrik denklemler
      matsever63, bu konuyu "10. sınıf matematik soruları" forumunda açtı.
      : 14
      : 05 Mar 2013, 20:43
    3. Trigonometrik Denklemler
      tufnrth, bu konuyu "10. sınıf matematik soruları" forumunda açtı.
      : 9
      : 20 May 2012, 11:21
    4. Trigonometrik Denklemler..
      duygu95, bu konuyu "10. sınıf matematik soruları" forumunda açtı.
      : 11
      : 22 May 2011, 01:11
    5. trigonometrik denklemler
      gezgin, bu konuyu "10. sınıf matematik soruları" forumunda açtı.
      : 6
      : 20 May 2011, 09:26
    Forum Kullanım ve Gizlilik Kuralları