Derzulya 02:54 23 Kas 2013    #1       
  
		
    1)x²P(x)=ax³+bx²-(a+2)x+b-3
olduğuna göre P(x+1) polinomunun kat sayıları toplamı kaçtır ?(Cevap=-1)
 
2)Üçüncü dereceden bir P(x) polinomu (x-3),(x+1) ve (x-2) ile tam bölünebilmektedir.
P(x) polinomunun sabit terimi (-18) olduğuna göre, P(x) polinomunun kat sayılar toplamı kaçtır ?(Cevap=-12)
 
3)P(x)polinomu (x²+4x) ile bölündüğünde bölüm B(x), kalan (3x+2)dir.
Buna göre P(x) polinomu (x+4) ile bölündüğünde bölüm ile kalanın toplamı nedir?
Cevap=x.B(x)-7
 
4)P(x) bir polinom olmak üzere 
P(x)=(2x⁴+3x²+ax²+2x+b/x²+2x)     (kesir bütün sayıları kapsıyor)
 
olduğuna göre a kaçtır ?(Cevap=-10)
  
    
 Enesemre 15:07 23 Kas 2013    #2       
  
		
    1)Öncelikle P(x)polinomunun değerini bulalım.
P(x)in x² ile çarpımının değeri  ax³+bx²-(a+2)x+b-3 olarak verildiğine göre P(x) x² ile tam bölünebilmektedir.Bu durumda x²=0 için kalan 0 olmalıdır.
 
Yani a+2=0 ve b-3=0 olacağından a=-2 ve b=3 olacaktır. -2x³+3x² yi x² ye bölersek P(x) i elde ederiz. Bölüm sonucunda P(x)=-2x+3 olarak bulunur. P(x+1) in katsayılar toplamı P(2) olacağından P(x) de 2 değerini yerine yazarsak;  -4+3=-1 olacaktır.
  
    
 Enesemre 15:11 23 Kas 2013    #3       
  
		
    2)P(x) polinomu üçüncü dereceden ve bölenleri (x-3),(x+1) ve (x-2) olduğuna göre P(x) polinomunu;
P(x)= a(x-3)(x+1)(x-2) şeklinde yazabiliriz.P(x) polinomunun sabit terimi (-18) olduğuna göre, P(0)=-18 olmalıdır.Yani;
P(0)= a(-3)(+1)(-2)=-18 buradan a=-3 olmalıdır.  P(x) polinomunun kat sayılar toplamı P(1) için; -3.-2.2.-1=-12 olarak bulunur.
  
    
 Enesemre 15:17 23 Kas 2013    #4     
		
    3)P(x)= x(x+4).B(x)+(3x+2) dersek; polinomu x+4 e böldüğümüzde x=-4 için kalan -10 olacaktır.
 
Bölme işlemini kalan ve bölüm kısımları için uyguladığımızda 3x+2 nin bölümü 3 olacaktır.Bu durumda bölüm ve kalanın toplamı x.B(x)+3 -10=xB(x)-7 olacaktır.
  
    
 Derzulya 15:48 27 Kas 2013    #5     
		
    4 güncel