1. #1

    Statü
    Grubu
    Kıdemli Üye
    İş
    Üniversite

    Sponsorlu Bağlantılar

    Fikir güzel sorular

    1-A dan B ye bolumunden bolum ve kalan C dir A nin alabilecegi farkli degerlerin toplami 24B=>B kactir
    2-‎17cm'lik çubuk 3 parcaya ayriliyor bu parcalar ucgen olusma olasiligi nedir
    3-n!+k=0 dan 8 e kadar toplam (n+k)!(n+k) =?
    4-N son rakamı 9 olduğu bilinen bir doğal sayıdır.
    son rakam (9) silinip kalan rakamların en başına (sayının başına) dokuz yazıldığında oluşan sayı N'in 7 katı oluğuna göre
    bu şartı sağlayan en küçük N doğal sayısı kaçtır
    5-merkezi S ve yarıçapı r=2 olan bir çemberde 45 derece açı ile kesişen iki yarıçap SA ve SB verilsin AB doğrusu ile AS doğrusunun S noktasındaki dikmesi k noktasında kesişsinler ABS üçgeninde B köşesinden inilen dikme AS kenarını L noktasında kessin buna göre SKDL yamuğunun alanı nedir?

  2. #2

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni

    Sponsorlu Bağlantılar

    güncel
    3 tür beyin vardır.
    Küçük beyinler, insanları;
    Orta beyinler, olayları;
    Büyük beyinler, fikirleri;
    tartışır.

  3. #3

    Statü
    Grubu
    Moderatör
    İş
    Diğer

    Sponsorlu Bağlantılar

    1.
    A=B.C+C verilmiş , ayrıca bölme işleminin yapısı gereği biliyoruzki B>C

    C=1 den (B-1) e kadar farklı değrler alabilir ve bunlara karşılık birer A değeri oluşur bunları toplayalım

    B.(1+...+(B-1))+(1+2+...+(B-1))=(B+1).(B-1).(B)/2=24B verilmiş
    B²-1=48 → B=7

    2.
    eğer parçalar reel uzunluk değerleri alabiliyorsa yani parçalardan biri için mesela 3,725364 cm gibi bir uzunuk mümkünse ve çubuğun herhangi iki noktsı için bu noktalardan kırılmış olma ihtimai aynı ise bu ihtimal çubuğun boyundan bağımsız olarak 1/4 tür. çözüme buradan (üçgen olasılığı) bakabilirsiniz

    eğer kenarlar kesinlikle tamayı olacak deniyorsa linkteki wolfram sayfasına gidilip uzunluk 1 değil de 17 için o şekil çizdrilir ve taralı alanın içindeki kafes noktaları (x ve y koordinatı tamsayı olan noktalar) sayılır ve tüm şekildeki kafes noktalarına oranı hesaplanır. cevap yine 1/4 e yakın bir değer çıkacaktır .


    3.
    k=0 için toplam ifadesindeki n!.n sayısı ile baştaki n! i toplarsak (n+1)! elde ederiz , bunu sırdaki terimle toplarsak (n+2)! elde ederiz ... en son elimizde (n+8)! ve (n+8)!.(n+8) vardır , bu ikisinin toplamıda (n+9)! olur


    4.
    N sayısı (k+1) basamaklı olsun , o zaman N sayısı A k basamaklı başka bir sayı olmak üzere A9 şeklindedir.
    soru bize
    9A=7.(A9) olduğunu vermiş , basamak çözümlemesi yaparsak
    9.10k+A=7.(10A+9)
    9.10k-63=69A
    3.10k-21=23A , sağ taraf 23 ile bölünebildiğin göre sol tarfın da bölünmesi grelidir ve doğal olarak da böyle bir sayı için yeterlidir.

    sırayla deneriz k kaç olduğunda bu sayı 23 e bölünür bakarız , sol taraf 3 e bölündüğü için ve 23 ile aralarında asal olduğu için
    10k-7 nin 23 e bölünüp bölünmediğini de incelesek olur
    10¹=10
    10²=8
    10³=11
    10⁴=18
    10⁵=19
    106=6
    ...
    1021≡7 (mod23)

    yani k en az 21 , buradan
    A=(3.1021-21)/23=130434782608695652173 bulunur
    en küçük
    N=1304347826086956521739 olur.

    5.
    SKDL değil de SKBL nin alanı soruluyor galiba
    <AKS=22,5º olduğunu görüyoruz
    SK üzerinde <PBK=22,5º olacak şekilde bir P noktası seçilirse SBP ikizkenar diküçgen olur ve bir kenarı da yarıçaptır öyleyse hipotenüs=SP=2√2 olur
    BPK da ikizkenar oluğunda PK=2 bulunur

    yamuğun alt tabanı 2+2√2 miş.
    üst taban ve yükseklik zaten hipotenüsü 2 olan ikizkenar diküçgenle oluşturulmakta yani ikisi de √2
    öyleyse alan=((2+2√2+√2)/2).√2=(2√2+6)/2=3+√2


 

  • Bu yazıyı beğenerek
    destek
    verebilirsiniz

    Foruma üye olmana gerek yok! Facebook hesabınla yorumlarını bekliyoruz!
  • Benzer konular

    1. güzel sorular
      nissan66, bu konuyu "9. sınıf matematik soruları" forumunda açtı.
      : 6
      : 10 Eki 2012, 18:00
    2. güzel sorular
      rozalin, bu konuyu "Özel geometri soruları" forumunda açtı.
      : 7
      : 27 Oca 2012, 19:14
    3. güzel sorular
      korkmazserkan, bu konuyu "9. sınıf matematik soruları" forumunda açtı.
      : 10
      : 03 Ara 2011, 18:20
    4. güzel sorular
      korkmazserkan, bu konuyu "9. sınıf matematik soruları" forumunda açtı.
      : 13
      : 28 Tem 2011, 06:08
    5. güzel sorular
      korkmazserkan, bu konuyu "9. sınıf matematik soruları" forumunda açtı.
      : 8
      : 01 May 2011, 15:15
    Forum Kullanım ve Gizlilik Kuralları