ozge35 22:32 16 Kas 2012 #1
soru1) 4x−y<4z
z<x−4 old. göre aşağıdakilerden hangisi daima doğrudur? (cevap D şıkkı)
A)y<16 B)x+z<2 C)0<y<12 D)y>16
soru2) x,y ve z gerçek sayılar; z>y>x (z−x).(y−z).(x+z)=0 olduğuna gore aşağıdakilerden hangisi daima doğrudur? (cevap Dşıkkı)
A)y.z>0 B)x.y<0 C)y+z=0 D)x.z<0
soru3)a,b ve cpozitif gerçek sayılar ve a<b<cdir 1/a+1/b+1/c=1/9 olduğuna gore c'nin aşabileceği en küçük tam sayı değeri? (28)
soru4) x ve y reel sayı 4<x<16 2<y<5 olduğuna gore x/y ifadesinin alabileceği en büyük tam sayı değer? (7)
soru5) −2<x<4 olmak üzere x²−x ifadesinin alabileceği kaç farklı tam sayı değeri vardır? (12)
nemesis 23:31 16 Kas 2012 #2
2. soru
çarpımın 0 olabilmesi için parantez içlerinden herhangi birinin sıfır olması gerekir.
ilk iki parantezin içini 0 a eşitlersek x=z ve y=z çıkar bunlar verilen eşitsizliğe göre imkansız bunun için 3. parantezi 0 a eşitliyoruz. x=-z bunun için x.z<0 olur.
nemesis 23:34 16 Kas 2012 #3
3. soru
önce ortancadan hesap yapılır yani a=b=c diye düşünülür.
3/b=1/9
b=27
b<c......... 27<c ..... dolayısıyla cnin alabileceği en küçük değer 28
nemesis 23:36 16 Kas 2012 #4
x/y nin max olması için x büyük =16 ve y küçük =2 alınır.
16/2=8
bu sonuca verilen eşitsizlikte eşitlik olmadığı için x/y<8 olur.
x/y nin en büyük değeri 7
nemesis 23:39 16 Kas 2012 #5
-2<x<4.......... 0<= x^2 <16
-4< -x <2
bu ifadeler toplanırsa
-4 < x^2-x < 18
olur cevap 21
nemesis 23:42 16 Kas 2012 #6
4x−y<4z
z<x−4 ..... her tarafı 4 ile çarparsak .... 4z<4x-16
bu iki eşitsizlikten
4x-y < 4z< 4x-16 oluşur.
-y < -16 ....... y > 16
ozge35 01:29 17 Kas 2012 #7 
teşekkürler nemesis