Mtmtkc 11:17 19 May 2015 #1
** x²+3x-5=0 denkleminin köklerinden biri m'dir.
buna göre, m²+3m işleminin sonucu kaçtır?
** (a-1)x²-ax+3-a=0 denklemi tam kare olduğuna göre, a tam sayısı kaçtır?
** x.(a-x)+2x²+1=0 denkleminin kökleri gerçek olduğuna göre, a aşağıdakilerden hangisi olamaz?
a)-3 b)-2 c)1 d)2 e)3
** a≠-5 olmak üzere, (a+5)x²-2(a+5)x+15=0 denkleminin kökleri eşit olduğuna göre, a nın değeri kaçtır?
** i²=-1 ol. üzere, (2-i)(z-i) =5i olduğuna göre, z karmaşık sayısı kaçtır?
Rica etsem, daha önce "polinom" başlığında sorduğum sorulara da bakar mısınız? Teşekkür ederim.
Mehmet Sarıhan 14:19 19 May 2015 #2
C-4
eğer kökler eşitse;
b²-4ac=0 olur.
4(a+5)²-4.(a+5).15=0
burdan a=10 çıkar
Not: Sorularını yazarken düzenli bir şekilde yaz ve şıkları yazmayı unutma
Mehmet Sarıhan 14:28 19 May 2015 #3
C-2
b²-4ac=0
a²+4(a-1)(a-3)
5a²-16a+12=(5a-6)(a-2)
a=6/5 a=2 tam sayı dediği için 2 yi alırsın
cevap=2
Mehmet Sarıhan 14:40 19 May 2015 #4
C-3
Şimdi soru sana köklerinin gerçek olduğunu söylemiş ve hangisinin sağlamadığı sorulmuş
O halde:
b²-4ac<0 olmalı
ax-x²+2x²+1 denklemi düzenlersek;
x²+ax+1
şimdi diskriminantı uygularsak, a²-4.1.1<0
a²<4 = a<2 yada (a>-2 sayı negatif bir sayıyla çarpılırsa işaret değişir)
-2<a<2 şıklara bakarsak onuda 1 sağlar diğerleri bu aralık dışında
Mehmet Sarıhan 14:47 19 May 2015 #5
C-5
denklemi açalım,
2z-2i-iz-1=5i
düzenleyelim
z(2-i)=7i+1
z=7i+1/2-i
burdan paydayı kökten kurtarmak için eşleneği ile çarpmalıyız. Yani pay ve paydayı (2+i) ile çarpıp düzenlersek
15i-5/5 = 3i-1 olur
z=3i-1
Mehmet Sarıhan 15:03 19 May 2015 #6
C-1
denklemin bir kökü m demiş
o halde o m yi x yerine yazarsak denklemi sağlar
m²+3m-5=0
m²+3m=5
bizden istenilen zaten m²+3m=5
inş.. kendimi ifade edebilmişimdir bir daha ki sefere soruların şıklarını yazmayı unutma grşrz
Serkan A. 17:32 19 May 2015 #7
Mehmet eline sağlık
Mtmtkc 12:55 23 May 2015 #8
Teşekkür ederim, şıkları ekleyeceğim bir dahaki sefere. Iyi günler..
Diğer çözümlü sorular alttadır.