cizmeli kedi 01:58 28 May 2012 #1
4x4 lük bir karenin içine 1,2,3,4 sayıları her bir satırda ve her bir sütunda yalnız bir kez kullanılmak şartıyla kaç farklı şekilde yerleştirilebilir?
duygu95 02:04 28 May 2012 #2
Cvp 192+ 23.3 olabilir mi
cizmeli kedi 02:16 28 May 2012 #3
Cevabın 288 olduğu yazıyor ancak ben 576 buluyorum.
duygu95 02:23 28 May 2012 #4
Evet 288 buldum. Az once 24 eksık hesaplamisim ama kafamdan hesapladim aciklayabilmem icin sekil cizmem lazim.telefondan cizilmiyor kimse cvp yazmazsa yarina
pc den gonderirim cozumu.
cizmeli kedi 02:30 28 May 2012 #5
teşekkürler cevabınızı bekliyorum.
Cem1971 15:23 28 May 2012 #6
İlk satır 4! adet olarak yerleşir, sonraki satır !4 şeklinde altfaktoriyel (subfactorial) sayısınca olacaktır, sonraki satır ise herbiri için 4 farklı şekilde yerleşir ve son satır zaten otomatikman bir tek olacaktır:
4!.!4.4.1 = 24.9.4 = 864 olmalı.
gereksizyorumcu 16:06 28 May 2012 #7
hocam dün gece ben de biraz bakmıştım bu soruya. ilk başta sizin gibi düşünmüştüm ama kalem kağıt alınca durum biraz farklı,
9 şaşkın dizilişin hepsinde 4 durum oluşturamıyoruz
mesela
1234
4321 için sıradaki satırın 4 ihtimali varken
1234
4312 için sıradaki satırın 2 ihtimali var.
bunun nedeni de ikinci satırda ilk satırdaki sayıların 4 lü zincir oluşturarak sıralamaları
9 dizilimden 6 tanesinde 4 lü zincir var 2 seçenek, 3 tanesinde ise 2 li zincir var 4 seçenek
sonuç da 4!.(6.2+3.4)=576 olmalı diye düşünüyorum
Cem1971 16:27 28 May 2012 #8
Ele kalem kâğıt almak gerekiyormuş, kağıt üzerinde çalışmadan görülemeyecek bir "nüans" varmış. Kalem olmadan yemedi!

Evet aynen dediğiniz gibi.
Sub'u parçalamadan direkt çarpmaya göre sayılamıyor veya hesaplanamıyor. Olimpik bir soru.
!4=9'u 6 ve 3 şeklinde parçalıyacağız. Evet şimdi gördüm.
nightmare 16:35 28 May 2012 #9
ben bu soruyu hatırlıyorum ya . hocam soru birey den mi?
ben bunu sormuştum dershanede ve 4!.3!.2!.1! şeklinde yapmışız ama şuan neden öyle yaptığımızı tam açıklayamadım biraz düşüniyim .
ama cevap doğru 288 olucak.
gereksizyorumcu 17:01 28 May 2012 #10
cevabının 576 olduğundan ve yukarıdaki anlatımdan şüphem yok , 288 bulan hocanızın yanlış yaptığını söyleyebilirim.
hocanız bu problemin genel haline 4!.3!.2!.1! şeklinde basit formda bi cevap üretebilirse ellerinden öperim hatta sponsor olup ertem şener'i hocanıza yollarım.
sorunun genel haline buradan ulaşabilirsiniz
en.wikipedia.org/
wiki/Latin_square