saliha42 21:52 09 Ara 2012 #1
svsmumcu26 21:56 09 Ara 2012 #2
C.5
(a+b)²=a²+b²+2ab
(2√2)²=a²+b²+2.(√2+1).(√2-1)
8=a²+b²+2
a²+b²=6 bulunur.
________________
Sorularınızı resimle eklemeyin.Bundan sonra eklerseniz her konunuz kapatılacaktır.
Math4TheLife 22:44 09 Ara 2012 #3
Soru 3
ab³-a³b
_______
a³b-2a²b²+ab³
Her iki ifadeyi de ab ortak parantezine alalım:
ab(b²-a²)
___________
ab(a²-2ab+b²)
ab ifadeleri sadeleşir:
(b²-a²)
__________
(a²-2ab+b²)
Paydaki ifade iki kare farkıdır.
Açılımı: (b-a).(b+a)
Paydadaki ifade ise (a-b).(a-b)= a²-2ab+b² özdeşliğidir.
Yerlerine yazalım:
(b-a).(b+a)
__________
(a-b).(a-b)
(b-a) ifadesini paydadaki ifadelerden biri ile sadeleştirebilmek için -1 ortak parantezine alalım:
-1(a-b).(b+a)
___________
(a-b).(a-b)
Paydaki ve paydadaki (a-b) ifadelerinden birer tanesi karşılıklı olarak sadeleşir.
-1.(b+a)
________
+1(a-b)
Paydaki -1 ifadesini parantez içine dağıtmalıyız:
-b-a
____
(a-b)
Payı ve paydayı -1 parantezine alarak düzenleyelim:
-1(a+b)
______
-1(b-a)
-1 ifadeleri sadeleşir:
(a+b)
______
(b-a)
Math4TheLife 23:27 09 Ara 2012 #4
Soru 2
2x²+x-1 = (ax+b)(x+1) ise a+b=?
(ax+b) ifadesini (x+1) ifadesine dağıtarak ifadenin açılımını bulalım:
ax² + ax + bx + b
Bu açılımda yanında x olmayan b sabit sayısı vardır.
Soruda sorulan 2x²+x-1 ifadesinde de -1 sabit sayısı vardır.
Dolayısıyla b=-1
Yerine koyarak yeniden yazalım:
ax² + ax + (-1)x + (-1)
Soruda verilen 2x²+x-1 ifadesinde x² ifadesinin başında bulunan rakam 2 olduğundan;
a=2
Bulduğumuz rakamları ifadede yerlerine koyarak sağlama yapalım:
2x² + 2x -1x -1
= 2x²+x-1
Sağlama sonucu bulduğumuz rakamların doğruluğundan emin olduk.
a+b= 2 + (-1)
= 2-1
=1
Serkan A. 01:59 10 Ara 2012 #5 Soru 2
2x²+x-1 = (ax+b)(x+1) ise a+b=?
(ax+b) ifadesini (x+1) ifadesine dağıtarak ifadenin açılımını bulalım:
ax² + ax + bx + b
Bu açılımda yanında x olmayan b sabit sayısı vardır.
Soruda sorulan 2x²+x-1 ifadesinde de -1 sabit sayısı vardır.
Dolayısıyla b=-1
Yerine koyarak yeniden yazalım:
ax² + ax + (-1)x + (-1)
Soruda verilen 2x²+x-1 ifadesinde x² ifadesinin başında bulunan rakam 2 olduğundan;
a=2
Bulduğumuz rakamları ifadede yerlerine koyarak sağlama yapalım:
2x² + 2x -1x -1
= 2x²+x-1
Sağlama sonucu bulduğumuz rakamların doğruluğundan emin olduk.
a+b= 2 + (-1)
= 2-1
=1
Eline sağlık. Yardımların için teşekkürler.
Math4TheLife 02:08 10 Ara 2012 #6 Eline sağlık. Yardımların için teşekkürler.
Önemi yok, ben teşekkür ederim