ben 10. sınıf ögrencisiym 1. dönemde haylazlık yaptım neredeyse okula bile gitmedim şimdi de ahmaklıgıma yanıyorum ax²+bx-c gibi bir denklemin köklerini bulamıyorum yardım ediinn
Matematik ara vermeye gelmez, konular birbirine bağlı olarak ilerliyor. İkinci derece denklemleri yapamazsan, parabolü ve ikinci derece eşitsizlikleri de yapamazsın. İkinci derece denklemleri yapabilmek için de çarpanlara ayırma bilginin iyi olması gerekli.
Karşında ax²+bx+c şeklinde bir denklem varsa öncelikle denklemin kökü var mı yok mu buna bakmalısın. Diskriminant yoluyla bunu bulabiliyoruz. Diskriminant ∆ ile gösterilir.
ax²+bx+c biçiminde bir denklemde ∆=b²-4ac ile bulunur.
∆'nın üç farklı durumu vardır.
∆<0 ise denklemin
reel kökü yoktur, boşuna arama.
∆=0 ise denklem tam kare ifadedir. İki tane birbirine eşit kök vardır.
∆>0 ise denklemin iki farklı reel kökü vardır.
Bazı denklemlerde kökler fazla işlem yapmadan görülebilir durumdadır, örneğin;
x²+2x-8=0 denkleminin köklerini bulmaya çalışalım. Önce ∆'a bakalım.
∆=b²-4ac=4+32=36, ∆>0 olduğundan iki reel kök vardır.
Çarpımları -8, toplamları +2 olan iki sayı arıyoruz. Bu sayılar +4 ve -2 olmalıdır.
Öyleyse denklemi şu şekilde yazabiliriz;
x²+2x-8=(x+4).(x-2)=0
Denklemde çarpım durumundaki iki ifadeden biri 0 olmalı ki sonuç da sıfır olsun.
x+4=0 için, x=-4
x-2=0 için, x=2 olarak denklemin iki farklı kökü bulunur.
Bazen de karşına öyle denklemler çıkar ki denkleme baktığın zaman direk çarpanlarına ayrılmaz. Mesela;
x²+7x-6 denklemini ele alalım. Çarpımları -6, toplamları +7 olan iki sayı biliyor musun? Hayır...
Bu tür durumlarda kökleri bulmak için kullandığımız bir formül var.
Bu formülü kullanarak kökleri bulalım. Önce Diskriminant...
∆=b²-4ac=49+36=73
∆=73, ∆>0 olduğundan iki farklı kök vardır.
Olarak bulunur.
Bazen de sana denklemin köklerini değil de kökler arasındaki bağıntıları sorarlar. Kökler toplamı, kökler çarpımı gibi.. Sakın kökleri bulup da toplamaya çarpmaya kalkma, hepsini bulmanın kısa yolu vardır.
Aşağıdaki formülleri kullanarak bu tür soruları da rahatlıkla cevaplayabilirsin.
ax²+bx+c denkleminin kökleri x1 ve x2 olsun. * x
1 ve x
2 simetrik iki kök ise, x
1=-x
2 , x
1+x
2=0 => b=0
Bu günden sonra Matematiğe daha fazla özen göstereceğini umuyorum... Bu yazının sana bir katkısı olmadıktan sonra, benim yazmak için harcadığım emeğin hiçbir anlamı kalmaz.
eline sağlık Gökberk.