ayse_arslan 10:35 01 May 2013 #1
1)∫(cos²x-sin²x)².d(tan2x) intg. değeri?(2x+c)
2)∫dx/(x(x²+1) intg. sonucu kaçtır?(lnx/√(x²+1))
3)f, R⁺ dan R⁺ ya tanımlı bir fonksiyondur.
f fonk. türevi kendisinin çarpmaya göre tersine eşittir.f(1)=2 old. göre,f(7) kaçtır?(4)
matplus 11:31 01 May 2013 #2
1.) ∫(cos²x-sin²x)².d(tan2x)=∫(cos2x)²2.(1+tan²2x).dx=∫cos²2x.2.[1/cos²2x]dx
=∫2dx=2x+c olur.
matplus 11:41 01 May 2013 #3
2.)
ikinci intg. de x²+1=u dönüşümü yapılırsa daha iyi düzenlenebilir.
=lnx-1/2.ln(x²+1)+c
=lnx-ln(x²+1)
1/2
=lnx-ln(√x²+1)
matplus 11:47 01 May 2013 #4
3.)
f(x).f'(x)=1
∫f(x).f'(x)dx=∫1.dx
f(x)=u ise, f'(x)dx=du
∫udu=x+c
u²/2=x+c
f²(x)=2x+k
f(1)=2 verilmiş,
f²(1)=2+k
√2+k=2 ise, k=2 olur ve de
f(x)=√2x+2 olur.
f(7)=4 bulunur.
ayse_arslan 13:16 02 May 2013 #5
hocam çok teşekkür ederim..
