1.q'<=>(p<=>p')
2.hangisi totoloji
p^p'
(1'vq)^0
p<=>p'
1<=>p
o=>p
3.(p^q)vr'≡0
denkliğini sağlayan p q r önermelerinin doğruluk değerlerinin oluşturduğu (p,q,r) sıralı üçlüsünün kaç farklı durumu vardır
1.q'<=>(p<=>p')
2.hangisi totoloji
p^p'
(1'vq)^0
p<=>p'
1<=>p
o=>p
3.(p^q)vr'≡0
denkliğini sağlayan p q r önermelerinin doğruluk değerlerinin oluşturduğu (p,q,r) sıralı üçlüsünün kaç farklı durumu vardır
1) en dıştakinden başlayalım
p<=>p'=0
bunun için p<=>p' açılımını yapabilirsin p=>p'^q=>p' dir açılımı
q'<=>0 şunu hatırlayalın p<=>0≡p'
o zaman q'<=>0 =q olur
toloji olması için doğruluk değeri 1 olmalıdır
p^p'≡0 çelişkidir
(1'vq)^0 en baştan başlarsak
1'≡0
0Vq≡1
^ bağlacında 0 ı görürsen direk 0 de o zaman buda çelişki
1<=>p
bu ifade p ye eşittir oyüzden bilemeyiz totolojimi çelişkimi olduğunu
0=>p≡1 totolojidir
3) V bağlacında 0 çıkması için her iki tarafında 0 olmaı gerekir
r'=0 ise r=1
o zaman p^q=0 olacak ^bağlacında 0 olması için herhangi bir tarafta 0 olması gerekir
o zaman p=0 q=0 olabilir
p=1 q=0 olabilir
P=0 q=1 olabilir ozaman 3 tane sıralı üçlüsü vardır
teşekkür ederim ama 1. sorunun nasıl çözüldüğünü anlamadım daha farklı yolları var mı
küme sorusu sorucağım cevaplarsanız sevinirim
a ve b, e evrensel kümesinde birer alt kümedir
B-(B-A)U(B-A)
ifadesi neye eşittir
A ve B birer küme olmak üzere ,
B-A => sadece (kesişim olmayan) b kısmını kavrar.B-(B-A) alırsak bu durumda iki kümenin kesişim noktasını elde ederiz.bu kesişim aralığını tekrar b-a kısmıyla birleştirirsek B kümesinin tamamı elde edilir.
teşekkürler
Foruma üye olmana gerek yok! Facebook hesabınla yorumlarını bekliyoruz!