1. #1

    Statü
    Grubu
    Üye
    İş
    Diğer

    Sponsorlu Bağlantılar

    soru

    analitik düzlemde verilen 2x-y+4=0 doğrusunun 2x-3y+8=0 doğrusuna göre simetriği olan doğrunun denklemi nedir? (cevap 2x-29y+60=0 olacak)

  2. #2

    Statü
    Grubu
    Üye
    İş
    Üniversite

    Sponsorlu Bağlantılar

    çok uzun bir soru

    2x-y+4=0
    2x-3y+8=0
    ________________
    2.denklemi -ile çarpalım
    2x-y+4=0
    -2x+3y-8=0
    --------------
    2y=4 y=2 denklemlerden birinde yerine koyarsak x=-1 bu noktaya K diyelim K(-1,8)
    2x-y+4=0 ise m₁=2
    2x-3y+8=0 ise m₂=2/3
    tanα=|m₂-m₁/1+m₁.m₂|sayıları yani eğimleri yerine koyalım
    =|(2/3-2):1+2.2/3=|4/7|=4/7
    d doğrusunun yani bulacağımız doğrunun eğimi m olsun.
    2x-3y+8=0ile d nin arasındaki açı α olduğundan tanα=|(m-2/3) : (1+2m/3)|=4/7
    |(3m-2)/(3+2m)|=4/7 bu durumda bulduğumuz ifadeyi hem 4/7 ye hem de -4/7ye eşitlemeliyiz. 3m-2/3+2m=4/7 denklemini çözersek m=2 çıkar ama bu bizim eğimimiz olamaz çünkü zaten 2x-y+4=0 doğrusunun eğimi de -2dir.
    3m-2/3+2m i -4/7ye eşitlersek eğimimizi buluruz m=2/29 dur
    K(-1,2) noktasından geçen ve m=2/29 olan doğru denklemini yazalım
    y-2=2/29.(x+1) bu denklemi çözdüğümüzde y=(2x+60)/29 içler dışlar çarpımı yaparsak
    29y=2x+60 yani 2x-29y+60=0 dır. geçmiş olsun

  3. #3

    Statü
    Grubu
    Kıdemli Üye
    İş
    Üniversite

    Sponsorlu Bağlantılar

    2x-y+4=0
    2x-3y+8=0 (simetri doğrumuz.)

    bir doğruyu çizmek için iki noktanın koordinaatlarını bilmek yeterlidir. bu üç doğru tek noktada kesirşir; ortak çözümden (bu iki denklemi kullanıp) A(-1,2) bulunur. Bu nokta haricinde verilen doğru üzerinde keyfi bir B noktası seçip verilen simetri doğrusuna göre simetriği alınırsa sorulan doğrunun iki noktasının koordınatları elmizde olur.

    x=0 ise y=2x+4=4 olur. B(0,4) noktası olsun(başka bir noktada olabilir). B noktasının simetrisi
    B noktasından geçen ve simetri doğruya dik doğrunun denklemini bulup ortak çözümlerini yapalım; simetri doğruya dik doğru denklemi y=-3/2 x +k
    4=2/3 .0 +k ise k=4

    y=-3/2 x+4
    y=2/3 x+8/3 bunların ortak çözümü D(8/13,40/13)

    D(8/13,40/13)
    B(0,4) ise C(16/13,28/13) olur


    A(-1,2) ve C(16/13,28/13) noktalarından gecen doğru;
    y=2/29 x +60/29

    29y=2x+60 (işlemden çok laf kalabalığı yaptık)


  4. #4

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni
    hasim, A(x₁,y₁) noktasının ax+by+c=0 doğrusuna göre simetriğini veren formül olmadıkça , 2. çözümün bir anlamı yok, 1. den daha uzun. Eğer böyle bir formül varsa, (olduğunu bilmiyorum, ama çıkartılabilir gibi duruyor. ) ancak o formül kullanılarak bu soru , kestirmeden çözülebilir.
    3 tür beyin vardır.
    Küçük beyinler, insanları;
    Orta beyinler, olayları;
    Büyük beyinler, fikirleri;
    tartışır.

  5. #5

    Statü
    Grubu
    Kıdemli Üye
    İş
    Üniversite
    ben çözüm için tek bir yöntem kullandım. şeklin altına bir de yaptığımızı özetledim. (mantıksal bi hata olabilir çünkü bir yerden bakarak değil kendi çözümüm.)
    çözümde okadar uzun değil, çözümden çok anlatması uzun sürüyor

  6. #6

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni

    Belli bir formül bulamadım ama, alternatif bir çözüm buldum.
    |AK|=√5
    |AB|=4/3
    |BC|=(8/3)-b
    |CK|=√(b-2)²+1

    Açıortay teoremi uygulanıp, elde edilen denklem çözülürse, b=60/29 bulunur.
    Yani, aradığımız denklemin, y eksenini kestiği nokta.
    K ve C den geçen doğru denklemini yazarsak, aradığımız denklemi buluruz.
    3 tür beyin vardır.
    Küçük beyinler, insanları;
    Orta beyinler, olayları;
    Büyük beyinler, fikirleri;
    tartışır.

  7. #7

    Statü
    Grubu
    Kıdemli Üye
    İş
    Matematik Öğretmeni
    ax+by+c=0 daki b ile, değişken olarak kullandığım b çakışmış.
    b yerine başka bir harf alınmalı.
    3 tür beyin vardır.
    Küçük beyinler, insanları;
    Orta beyinler, olayları;
    Büyük beyinler, fikirleri;
    tartışır.


 

  • Bu yazıyı beğenerek
    destek
    verebilirsiniz

    Foruma üye olmana gerek yok! Facebook hesabınla yorumlarını bekliyoruz!
  • Forum Kullanım ve Gizlilik Kuralları