(2/×) + (×/2) > 0 eşitsizliğinin çözüm kümesi aşağıdakilerden hangisidir?
A) ( -2,2) B) (-2,0) C) ( 0,∞) D) ( -2,∞) E) boş küme
doğru cevap C şıkkı
Yazdırılabilir görünüm
(2/×) + (×/2) > 0 eşitsizliğinin çözüm kümesi aşağıdakilerden hangisidir?
A) ( -2,2) B) (-2,0) C) ( 0,∞) D) ( -2,∞) E) boş küme
doğru cevap C şıkkı
4/2x>0
1/2x>0
2x>0 , x>0 olması yeterlidir :)
bu çözümü anlamadım
ne tesadüf ben de anlaşılmayacak ne var onu anlamadım :)
yukarısı 4 garanti pozitif alttaraf pozitif olmalı ki garanti pozitif olsun
çözüm çok kısa anlaşılmıyor, biraz detaylı açıklayabilecek olan var mı?
(2/x)+(x/2)=(4+x^2)/2x
4+x^2 dama pozitif olduğundan 2x>0 => x>0 olması yeter.
ben şöyle çözüyorum nerde mantık hatası yaptığımı göremedimsentetikgeo'den alıntı:(2/x)+(x/2)=(4+x^2)/2x
4+x^2 dama pozitif olduğundan 2x>0 => x>0 olması yeter.
2/x+x/2>0
(4+x^2)/2x>0
pay pozitif payda da pozitif olmalıki 0 dan büyük olsun işleme devam ediyorum
4+x^2>2x.0
4+x^2>0
4>-x^2 eksiyle çarpıyorum
-4<x^2 kök alıyorum
2<x
(2,sonsuz) aralığı
pay 4+x^2 değil mi? negatif ya da 0 olabilir mi bu ifade?kırmızı gece'den alıntı:ben şöyle çözüyorum nerde mantık hatası yaptığımı göremedim
(4+x^2)
pay pozitif payda da pozitif olmalıki 0 dan büyük olsun işleme devam ediyorum
garanti pozitiftir! bu yüzden atabilirsiniz.
-4<x^2 tüm reel sayılar için doğrudur, ayrıca -4'ün karekökü 2 değil :)kırmızı gece'den alıntı:ben şöyle çözüyorum nerde mantık hatası yaptığımı göremedim
2/x+x/2>0
(4+x^2)/2x>0
pay pozitif payda da pozitif olmalıki 0 dan büyük olsun işleme devam ediyorum
4+x^2>2x.0
4+x^2>0
4>-x^2 eksiyle çarpıyorum
-4<x^2 kök alıyorum
2<x
(2,sonsuz) aralığı