f(x) = -x² - mx - 4
parabolüne başlangıç noktasından çizilen teğetler birbirini dik kestiğine göre, m'nin alabileceği pozitif değer kaçtır?
sadece bu kaldı :confused:
f(x) = -x² - mx - 4
parabolüne başlangıç noktasından çizilen teğetler birbirini dik kestiğine göre, m'nin alabileceği pozitif değer kaçtır?
sadece bu kaldı :confused:
özel bir durum
Delta=-1 durumudur
m²-4.-1.-4=-1 olmalıdır
m²-16=-1
m²=15
m=pozitif istediğinden √15
teşekkür ederim cevap doğru :D
https://img375.yukle.tc/images/1065uy.JPG
Orjinden geçen doğrular y=nx şeklindedir. Buradaki n eğimdir.
f(x) = -x² - mx - 4 parabolü ve y=nx doğrusu teğet iseler, ortak denklemde delta=0 olmalıdır.
-x² - mx - 4=nx
-x²-(m-n)x-4=0
Delta=0 (m-n)²-4(-1)(-4)=0
(m-n)²-16=0
(m-n)²=16
m-n=4 n1=m-4
m-n=-4 n2=m+4
Böylece iki teğetin eğimleri bulunmuş olur.Doğrular birbirine dik ise
n1.n2=-1 olacağından;
(m-4)(m+4)=-1
m²-16=-1
m²=15
m=√15 m=-√15
Pek ezber sayılmaz ispatını biliyorum :)