Yükleniyor, lütfen bekleyiniz!

» » limit

18 Ocak 2009 | yazan: mathsman | 18 yorum

Facebookta paylaş
Limit nedir ?

Limit kavramı ve tanımı, kavram olarak eski olmasına kaşın, tanımlanması ve kullanılması çok eski değildir. Örneğin limit ünlü ε−δ tekniği ile tanımlanması ve kullanılması ülü Alman Matematikçisi Eduard Heine (1821-1881) tarafından olmştur. Limit fizik ve mühendislikte yaygın olarak kullanılılır. Limit kavramının öğrencilere verilmesi, tanıtılması, öğretilmesi ve öğrenilmesi öyle o kadar da kolay değildir. Bunun için, limitin tanıtılmasına önce sezgisel olarak yaklaşalım. Daha sonra tam tanımını verelim.
f(x) fonksiyonu verilsin. x noktası bir a noktasına yeteri kadar yaklaşsın. x noktasının a noktasına reel eksen üzerinde sağdan ve soldan olmak üzere, iki yönlü yaklaşımı vardır.




Burada, x değerinin a değerine eşit olması gerekmez. Bir çok durumda, a noktası, f(x) fonksiyonunun tanım bölgesinde olmayabilir. Yani, x noktası a noktasına (x≠a) sağdan ve soldan yaklaşırken f(x) fonksiyonu bir L sayısına yaklaşıyorsa f(x) fonksiyonunun bu a noktasında limiti vardır denir ve kısaca limit



A ⊂ IR olmak üzere f: A → IR , y = f(x) fonksiyonu verilsin. Eğer x değişkeninin değerleri sabit bir a gerçel sayısına istenildiği kadar yakın ise o zaman bu yaklaşma sembolik olarak x → a gibi gösterilir ve "x değişkeni a ya yaklaşıyor" şeklinde okunur. y = f(x) fonksiyonunun limitinin varlığı, x değişkeni a ya yaklaştığı zaman f(x) fonksiyon değerlerinin bir gerçel sayıya yaklaşıp yaklaşmamasına bağlıdır.f: A → IR fonksiyonu verilsin ve a sayısı A kümesinin yığılma noktası olsun. Eğer her ε > 0 için bir δ >0 sayısı bulunabiliyor ve 0 < | x - a | < δ eşitsizliğini sağlayan tüm x ∈ A değerleri için | f(x) - L | < ε eşitsizliği sağlanıyorsa, o zaman x → a iken f(x) in limiti L dir (veya f fonksiyonunun a noktasındaki limiti L dir) denir.

  Süreklilik nedir?
Limit kavramı ile süreklilik kavramının birbiriyle çok yakın ilşkisi vardır. Kısaca söylemek gerekirse, süreklilik bir limit problemidir.
A ⊂ IR olmak üzere f: A → IR fonksiyonu verilsin ve a ∈ A olsun. Eğer Lim f(x) ( x →  a ) limiti varsa ve bu limit f(x) fonksiyonunun x = a noktasındaki değeri olan f(a) ya eşitse,ise y = f(x) fonksiyonu x = a noktasında sürekli dir denir.

Konunun devamındaki dökümanda limitin özellikleri , limit ve süreklilik ile ilgili çözümlü soruları , süreklilik konu anlatımı bulunmaktadır.

7 Ocak 2009 | yazan: bgultekin06 | 13 yorum

Facebookta paylaş
sıfır interal sembol artı eksi çarpıMatematikte önemli olan ve genelde karıştırılan iki ifade vardır. Tanımsız ve Belirsiz. Hatta ikisine de aynı diyenler bile çıkabiliyor. Bu karışıklık daha çok a≠0 için a/0 ifadesi de 0/0 ifadesi de tanımsız olarak algılanmaktan ortaya çıkıyor. Doğrusu sıfırdan farklı a değerleri için a/0=Tanımsız ve 0/0=Belirsiz olmalıdır. Aslında çok farklıdırlar ve anlaşılması çok kolaydır. Şimdi bu ifadeleri ispatlayarak farkı ortaya koymaya çalışalım.
Sıfırdan farklı a için a/0=x diyelim. Buradan a=0.x olacaktır. Bu eşitlikte x değerini adlandırmaya çalışalım. “0 ile çarpıldığında sıfırdan farklı a değerini verecek sayı”. Böyle bir sayı tanımlanmadığı için x tanımsız olacaktır. Dolayısıyla x dediğimiz a/0 da tanımsız olur.